Approximate method of optimization of nonlinear programming problems
نویسندگان
چکیده
Currently, the problem of choosing optimal solution is one most important and urgent problems in industry, economy, agriculture military sphere. Methods approaches theory nonlinear programming are used to solve many applied optimization problems. The main difficulty lack a universal method for solving this class To problem, special methods being developed particular problems, example, positive or limited initial data. paper investigates analytical purpose work develop new approximate function under constraints form equalities. do this, an approximation (expansion series) objective performed. All variables considered bounded at top bottom. infinitely differentiable by set arguments, all their derivatives assumed be absolute value given number. In article, theorem on conditional maximum proved. results which justification method. Since approximate, error proposed representation constraint functions estimated. nature, boundaries variable changes often approximately they can adjusted. addition, it possible adjust point relative decomposed into series. Therefore, article analyzes sensitivity when changing decomposition series different values coordinates left searching function. explain operation method, specific numerical example analyzed detail. Modeling MS Excel environment was it. Graphs study data constructed. Nonlinear models used, following practically issues: minimizing costs sale products, optimizing consumer choice, maximizing production volume, determining rational behavior individual situation, use resources, forming portfolio securities.
منابع مشابه
A nonlinear interval number programming method for uncertain optimization problems
In this paper, a method is suggested to solve the nonlinear interval number programming problem with uncertain coefficients both in nonlinear objective function and nonlinear constraints. Based on an order relation of interval number, the uncertain objective function is transformed into two deterministic objective functions, in which the robustness of design is considered. Through a modified po...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Social cognitive optimization for nonlinear programming problems
Social cognitive optimization (SCO) for solving nonlinear programming problems (NLP) is presented based on human intelligence with the social cognitive theory (SCT). The experiments by comparing SCO with genetic algorithms on some benchmark functions show that it can get highquality solutions efficiently, even by only one learning agent.
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ?????????? ?????????? ? ??????? ??????????
سال: 2022
ISSN: ['2499-9873']
DOI: https://doi.org/10.15593/2499-9873/2022.4.01